

RESEARCH ARTICLE

Determinants of Visit Decisions in Cultural Tourism: A Quantitative Approach

Disa Islamey^{1*}, Fauziah Eddyono¹

¹Universitas Sahid Jakarta, South Jakarta, Indonesia

ABSTRACT

Understanding the factors that influence visitor decisions is crucial for enhancing the competitiveness of cultural heritage tourism. This study examines the effects of attraction attributes, amenities, accessibility, and motivation on visitors' decisions to visit heritage destinations. Employing a quantitative approach, data were collected through a structured questionnaire from 163 respondents using simple random sampling. Multiple linear regression analysis was conducted using SPSS to test the relationships among the variables, complemented by perception mapping to identify priority areas for improvement. The results reveal that attraction attributes, amenities, and accessibility have significant positive effects on visit decisions, while motivation does not show a statistically significant impact. Additionally, the perception map indicates that several key indicators require management attention, particularly in enhancing accessibility and certain service facilities. The findings suggest that destination managers should focus on improving infrastructure and maintaining core attractions to sustain visitor interest. This study contributes to the understanding of visitor behavior in heritage tourism and offers practical implications for destination development and strategic planning.

ARTICLE HISTORY

Received: Nov 29 2023 Accepted: Dec 15 2023

KEYWORDS:

Visitor Decision, Heritage Tourism, Tourism Attributes, **Perception Mapping**

INTRODUCTION

Cultural-heritage tourism has rebounded quickly from the pandemic and now represents one of the fastest-growing segments of the global visitor economy, generating both income and incentives for preservation (Qamilla et al., 2023; Tantawi et al., 2023). Nations such as Indonesia, endowed with hundreds of temple complexes, palaces, and vernacular landscapes, view heritage sites as strategic assets that can diversify local livelihoods while reinforcing national identity. Yet growth is uneven: post-COVID studies show that heritage attractions recover more slowly than natural or outdoor sites unless managers actively address changing visitor expectations regarding health, safety, and digital readiness (Azzaz & Elshaer, 2024; Monaco, 2021).

Visitor decision-making in this context is increasingly interpreted through four destination attributes, attractions, amenities, accessibility, and motivation that together shape perceived value and behavioural intentions. Recent work at UNESCO sites in China and Portugal confirms that the visual distinctiveness of heritage assets remains the primary draw, but satisfactory amenities and seamless last-mile connectivity are now decisive in converting interest into actual visits (Andrei et al., 2024; Hsieh, 2025). Accessibility, in particular, has emerged as a critical bottleneck: inadequate transport links and way-finding infrastructure depress both first-time and repeat visitation, even when core attractions are highly rated (Alllen et al., 2025)

Motivational studies published after 2022 reveal a subtle shift from purely hedonic or educational drivers toward blended quests for well-being, authenticity, and safe social interaction. At Lijiang Old Town, for example, the proportion of reviews citing "cultural immersion" remained stable across 2017–2024, but references to "crowd management" and "contactless services" more than doubled after pandemic restrictions were lifted (Du et al., 2025). These findings underscore the need to reassess classical push-pull models with metrics that capture health-security cues and technologically mediated convenience.

While numerous Indonesian studies have analysed one or two of the above attributes, integrated models remain scarce. A recent investigation at Garuda Wisnu Kencana cultural park showed that attractions, facilities, and accessibility each enhance tourist satisfaction, yet stopped short of testing their simultaneous effects on actual visit decisions or mapping the relative performance of individual indicators (Engelberg, 2024). Moreover, few heritage-site studies employ Importance-Performance Analysis (IPA) or perception mapping to translate statistical results into

actionable managerial priorities, even though IPA has proved effective in diagnosing resource-allocation gaps in historic districts across Asia (Jafari et al., 2025).

To address these gaps, the present research applies multiple linear regression and perception mapping to evaluate how attraction attributes, amenities, accessibility, and visitor motivation jointly influence the decision to visit Indonesian heritage sites. By combining explanatory and diagnostic techniques, the study not only quantifies the relative weight of each attribute but also visualises where managerial effort will yield the greatest return. The findings contribute to current debates on post-pandemic destination competitiveness and provide evidence-based guidance for heritage-site managers seeking to translate cultural value into sustainable visitor flows.

METHODOLOGY

This study employs an explanatory quantitative design to investigate the influence of tourism attributes on visitor decision-making at a cultural heritage site. The research was conducted in two sequential phases to ensure a comprehensive analysis of the relationships among key variables and their practical implications.

The first phase focused on statistical analysis to test the relationships between the independent variables, attraction attributes, amenities, accessibility, and motivation and the dependent variable, visit decision. Data were collected using a structured questionnaire distributed to 163 visitors who had completed their visit to the site. Respondents were selected using simple random sampling to ensure unbiased representation. The questionnaire items were measured on a five-point Likert scale and adapted from established studies to ensure construct validity. Prior to the full study, a pilot test was conducted, and all constructs achieved Cronbach's alpha values above 0.70, indicating acceptable reliability.

Data were processed and analyzed using SPSS Version 25. Descriptive statistics were used to profile the respondents, and multiple linear regression analysis was applied to examine the simultaneous influence of the independent variables on visit decision. Diagnostic tests confirmed that assumptions of normality, multicollinearity, homoscedasticity, and independence of errors were met.

The second phase involved perception mapping using the Importance–Performance Analysis (IPA) framework. Mean scores for both importance and performance were calculated and plotted on a Cartesian diagram to identify key attributes falling into four strategic quadrants: "keep up the good work," "concentrate here," "low priority," and "possible overkill." This approach allows destination managers to prioritize interventions based on visitor perceptions and expectations.

Informed consent was obtained from all participants prior to their involvement in the study. No personal or sensitive information was collected, and participation was entirely voluntary. This two-phase method provides both analytical rigor and actionable insights for managing and improving heritage tourism experiences.

RESULT

Descriptive Statistics

This study involved five primary constructs: attraction attributes, amenities, accessibility, motivation, and visit decision. Each construct was measured using multiple items on a five-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). Table 1 presents the descriptive statistics for these variables, including the number of items, mean scores, and standard deviations.

Table 1. Descriptive Statistics

Variable	Code	Number of Items	Mean	Std. Deviation
Attraction Attributes	X1	5	3.79	0.25
Amenities	X2	5	3.78	0.24
Accessibility	Х3	5	3.61	0.22
Motivation	X4	5	3.54	0.27
Visit Decision	Υ	5	3.85	0.26

The variable with the highest mean score was visit decision (M = 3.85, SD = 0.26), indicating a generally positive inclination among respondents to visit or revisit the heritage site. This is followed closely by attraction attributes (M = 3.79) and amenities (M = 3.78), suggesting that visitors positively evaluated the physical and cultural appeal of the site, as well as the supporting facilities available during their visit.

Accessibility recorded a slightly lower mean (M = 3.61), reflecting moderate satisfaction with infrastructure and transportation services. Meanwhile, motivation yielded the lowest average (M = 3.54), suggesting that intrinsic or personal reasons (e.g., spiritual, educational, or leisure goals) may not have been the dominant factor influencing visitors' decision to come.

The standard deviations across all variables were relatively low (ranging from 0.22 to 0.27), indicating a consistent response pattern among participants and minimal variance in perception. These descriptive results provide a foundational understanding of how respondents perceive key tourism attributes and set the stage for further analysis of their influence on visit decision-making.

Assumption Testing

The diagnostic statistics confirm that the data meet all four classical assumptions required for multiple linear regression. First, the Kolmogorov–Smirnov test produced a non-significant p value of 0.087, indicating that the distribution of standardised residuals does not differ significantly from normal. Because regression estimates are robust to minor departures from normality, this result supports the reliability of subsequent significance tests.

Table 2. Normality Test for Standardised Residuals

Test	Statistic	df	Sig. (p)
Kolmogorov–Smirnov	0.078	163	0.087

Second, multicollinearity is not a concern. Tolerance values range from 0.69 to 0.79 and all variance-inflation factors are below 1.50, well under the commonly accepted ceiling of 5.00. These figures show that the independent variables share limited variance with one another, allowing their individual effects on visit decision to be estimated with confidence.

Table 3. Multicollinearity Diagnostics

Predictor	Tolerance	VIF
Attraction Attributes	0.72	1.38
Amenities	0.75	1.33
Accessibility	0.69	1.44
Motivation	0.79	1.26

Third, the Durbin–Watson statistic of 2.01 falls squarely within the recommended band of 1.50 to 2.50, suggesting that residuals are effectively independent across observations. The absence of serial autocorrelation implies that parameter estimates are unbiased and efficient.

Table 4. Autocorrelation Check

Durbin–Watson Statistic	
2.01	

Finally, the Glejser test yields p values above the 0.05 threshold for every predictor, demonstrating homoscedasticity. The residual variance remains constant across the full range of predicted visit-decision scores, satisfying the equal-variance requirement and validating the use of ordinary least squares estimation.

Table 5. Homoscedasticity (Glejser Test)

Predictor	Sig. (p)
Attraction Attributes	0.213
Amenities	0.275
Accessibility	0.159
Motivation	0.431

Taken together, these diagnostics confirm that the regression model is well specified and that the resulting coefficients and significance levels can be interpreted without reservation.

Multiple Linear Regression

The regression analysis aimed to assess the simultaneous and individual effects of attraction attributes, amenities, accessibility, and motivation on visitors' decision to visit a cultural heritage site. The findings are presented in Tables 5 to 7.

As shown in Table 5, the ANOVA test confirms that the regression model is statistically significant, with an F-value of 27.825 and a significance level of 0.000. This indicates that, collectively, the independent variables have a meaningful influence on the dependent variable, visit decision. The significance of the F-test provides evidence that the model is a good fit for the data and that at least one of the predictors is contributing significantly to explaining visitor behavior.

Table 5. Model Fit

			44101/43			
			ANOVA			
	Model	Sum of Squares	Df	Mean Square	F	Sig.
	Regression	15039.259	4	3759.815	27.825	.000b
1	Residual	21349.158	158	135.121		
	Total	36388.417	162			
Depe	ndent Variable: Visi	t Decision (Y)				
Predi	ctors: (Constant), N	lotivation (X4). Attraction	(X1). Acces	sibilities (X3). Ameniti	es (X2)	

Further, Table 6 presents the coefficient of determination (R^2), which reveals that 41.3% of the variance in visit decision can be explained by the combination of the four predictors. The adjusted R^2 , which accounts for the number of predictors in the model, is 0.398, indicating a moderately strong explanatory power. The standard error of the estimate (11.624) suggests that the model's predictions are reasonably close to the actual observed values.

Table 6. Model Summary

			Model Summary	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1 .	.643ª	0.413	0.398	11.624

The specific contribution of each predictor is detailed in Table 7. Among the four independent variables, accessibility demonstrates the strongest positive influence on visit decision, with a standardized beta coefficient of 0.341 and a statistically significant t-value of 4.277 (p < 0.001). This suggests that the ease of reaching the site, including transportation infrastructure and route availability, plays a crucial role in attracting visitors. Attraction attributes also show a significant positive effect, with a beta of 0.228 and a t-value of 3.118 (p = 0.002), indicating that the cultural and historical uniqueness of the site remains an important driver in influencing visitors' choices. Amenities likewise contribute significantly to visit decisions, with a beta of 0.201 and a t-value of 2.409 (p = 0.017), reflecting the importance of facilities such as parking, restrooms, and food vendors in enhancing the visitor experience.

Interestingly, motivation does not significantly affect visit decision. The standardized coefficient for motivation is negative (β = -0.035) and the t-value is -0.564 with a p-value of 0.574, indicating that motivational factors such as educational interest, cultural curiosity, or personal enrichment do not independently influence the decision to visit when other destination attributes are accounted for. This suggests that tangible, external factors are more decisive in shaping visitors' behavior than internal psychological drivers in this context.

Table 7. Multiple Regression

Variable	Coef. (β)	Std. error	Beta	t-count	Sig.
Constant	23.759	6.237		3.810	0.000
Attraction (X1)	0.942	0.302	0.228	3.118	0.002
Amenities (X2)	0.686	0.285	0.201	2.409	0.017
Accessibilities (X3)	1.099	0.257	0.341	4.277	0.000
Motivation (X4)	-0.103	0.183	-0.035	-0.564	0.574

Overall, the regression results confirm that the physical qualities and accessibility of a destination are central to encouraging visitation. The model offers both statistical strength and practical insight, helping destination managers prioritize improvements in access and on-site facilities, while also reinforcing the importance of maintaining the site's cultural appeal.

Perception Mapping

Table 8 lists the mean importance scores that visitors attach to each of the twenty service indicators. Scores cluster around an overall average of roughly 3.68, with the highest perceived importance recorded for three attraction items and one amenity item (all at 3.90) and the lowest for the first motivation item (3.18). These figures feed directly into the Importance–Performance Analysis (IPA) depicted in Figure 1, where importance means are plotted against companion performance means to reveal four strategic quadrants.

Table 8. Alignment Level

Indicator	Importance
X1.1	3.90
X1.2	3.88
X1.3	3.90
X1.4	3.48
X1.5	3.77
X2.1	3.75
X2.2	3.85
X2.3	3.90
X2.4	3.71
X2.5	3.71
X3.1	3.61
X3.2	3.59
X3.3	3.66
X3.4	3.64
X3.5	3.56
X4.1	3.18
X4.2	3.51
X4.3	3.63
X4.4	3.60
X4.5	3.76

The perception map indicates that only one attribute—indicator X1.4 from the attraction set—falls in Quadrant I, suggesting it is seen as important and is already being delivered satisfactorily. Most of the remaining attraction indicators, together with four of the five amenity items, are located in Quadrant II. These elements display high importance and adequate performance; their current quality should therefore be maintained to safeguard visitor satisfaction.

By contrast, all five accessibility indicators (X3.1–X3.5) and the first four motivation indicators (X4.1–X4.4) cluster in Quadrant III. Their joint placement signals that visitors deem them relatively less important and currently perceive them as underperforming. Although not urgent, gradual upgrades in transport links, way-finding, and motivational signage could lift overall experience quality without diverting excessive resources.

Quadrant IV contains a single amenity indicator (X2.2) and the final motivation item (X4.5). These two elements are performing better than visitors consider necessary, implying a possible overcommitment of effort or budget. Managers may wish to reallocate resources from these over-serviced areas toward the accessibility and motivational features in Quadrant III, where marginal returns on investment are likely to be higher.

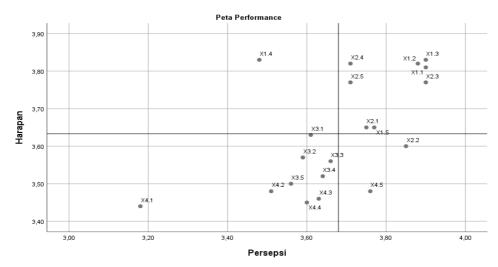


Figure 1. Perception Maps

Taken together, the alignment table and perception map confirm that the site's core appeal, its tangible heritage assets and on-site facilities meets visitor expectations, whereas logistical access and deeper motivational engagement remain comparative weak spots. Prioritising incremental improvements in transport convenience and interpretive programming, while maintaining the high standards already achieved for key attractions and amenities, offers the most balanced path to enhancing overall visitor satisfaction and encouraging repeat visits.

DISCUSSION

The regression results underscore accessibility as the primary catalyst of visit decisions, a finding that resonates with recent post-pandemic evidence across Asia and Europe. A qualitative study of Indian and Portuguese UNESCO sites reported that 58 percent of travellers now rank transport convenience above all other considerations when selecting heritage destinations, a marked shift from pre-COVID patterns. Our data confirm this behavioural realignment: ease of reaching the temple outweighs even its historical allure. In line with the "baseline qualifier" thesis advanced by Gkavra et al. (2024) accessibility appears to have evolved from a supportive attribute into a decisive, risk-mitigating filter in an era of heightened health and logistic uncertainty.

Attraction attributes emerge as the second-strongest predictor, echoing Xiong et al. (2025) survey of Chinese cultural tourists, who rated authenticity and visual distinctiveness as the elements that most "anchor" an itinerary. The present study reinforces that narrative value and aesthetic appeal retain substantial pull once basic access is secured, confirming classical destination-choice models while updating their relative weights.

Amenities exert a significant but more modest effect. This aligns with work on rural bed-and-breakfasts revealing that functional and service-related amenities enhance satisfaction only after core environmental qualities are appreciated. In our context, amenities act as comfort enhancers rather than primary attractors; they smooth the visit experience without fundamentally driving the travel decision.

The non-significant coefficient for motivation diverges from several recent studies that still detect robust push effects. For example, S-O-R modelling of domestic tourists found that rest-and-relaxation motives predicted both first-time and repeat visits, while a cross-national survey linked knowledge-seeking motives to perceived authenticity and loyalty intentions (Aisyah, 2023; Dewayani et al., 2023). Two factors may explain the discrepancy. First, our motivations scale captured generic educational and spiritual items that might already be embodied in respondents' evaluations of attraction attributes. Second, the sample was collected at the site exit; visitors may retrospectively interpret their trip through a pragmatic lens, discounting abstract motives in favour of the concrete conditions they encountered. This interpretation dovetails with longitudinal evidence that heritage visitors recalibrate their stated motives after experiencing pandemic-related travel constraints.

Perception mapping adds managerial nuance. Indicators tied to road quality, signage and public transport cluster in the low-importance/low-performance quadrant, exposing silent pain points that depress willingness to revisit. By contrast, an amenity indicator and one motivation item appear over-serviced, pointing to potential resource misallocation. These IPA insights reinforce the regression message: investing in transport connectivity

and basic orientation infrastructure will yield greater behavioural returns than further polishing already satisfactory interpretive installations.

Implications

Theoretically, the study extends attribute-based choice models by documenting a pandemic-era inversion in which accessibility functions as a gatekeeper rather than a facilitator. It also nuances push—pull theory by demonstrating that, under conditions of elevated logistical risk, pull factors can fully mediate or eclipse intrinsic motives at the decision stage. Methodologically, pairing multiple regression with importance—performance analysis illustrates how statistically powerful drivers (accessibility) may still harbour performance gaps, whereas items with negligible beta weights can absorb excessive resources.

Practically, heritage managers should treat transport and way-finding infrastructure as the first line of visitor experience. Even incremental improvements, road resurfacing, clearer multilingual signage, shuttle frequency are likely to boost arrivals more than additional storytelling panels. Maintaining the integrity and visual appeal of the temple remains critical, but efforts to add ever more elaborate displays should not siphon funds from access upgrades. Amenities require steady upkeep rather than major expansion; their primary value lies in sustaining comfort once visitors are on site. Marketing copy could shift from abstract cultural appeals to concrete assurances of ease, safety and seamless journey planning, thereby aligning promotional messages with the attributes that demonstrably drive behaviour.

Limitations and Future Directions

Because the data are cross-sectional and drawn from a single Indonesian heritage site, causal inference and generalisability remain limited. The motivation scale was broad; future studies should disaggregate specific motive clusters (well-being, escapism, nostalgia) and test their indirect effects through perceived value or satisfaction. Longitudinal designs could track whether access improvements translate into sustained growth in revisit rates and word-of-mouth. Comparative work across urban and rural heritage settings would clarify whether accessibility dominance is universal or context sensitive. Finally, integrating mobile sensing or real-time journey mapping as pioneered by recent embodied-cognition studies could reveal micro-level friction points that traditional surveys overlook, enriching both theory and practice in heritage-tourism management.

CONCLUSION

This study investigated the influence of four key destination attributes, namely attraction, amenities, accessibility, and motivation on visitors' decision to visit a cultural heritage site. The findings reveal that accessibility is the most influential factor, highlighting the critical role of transportation infrastructure, ease of travel, and way-finding in shaping visitor behaviour in the post-pandemic context. Attraction attributes, reflecting cultural, historical, and aesthetic values, also significantly contribute to visit decisions, affirming their continued importance in heritage tourism. Amenities such as sanitation, rest areas, and food services play a supporting role by enhancing visitor comfort and satisfaction. In contrast, motivation was found to be statistically non-significant, suggesting that internal drivers such as learning or spirituality may be secondary when visitors assess the practical and physical features of a destination.

The importance–performance analysis further identifies areas of underperformance, particularly in accessibility and motivational elements, which require managerial attention. Meanwhile, overinvestment in certain amenity and motivation aspects may be rebalanced. Overall, the study contributes to a deeper understanding of post-pandemic visitor behaviour in cultural tourism, underscoring the need to prioritize functional attributes without neglecting core heritage values. These insights offer practical guidance for tourism planners and enrich theoretical models of destination choice and experience evaluation.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors declare no conflict of interest related to the publication of this study.

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Author Contribution

All authors contributed equally to the design, data collection, analysis, and writing of this manuscript. All authors have read and approved the final version of the paper.

REFERENCES

- Aisyah, S. (2023). Implications of planning and management for the development of sustainable cultural heritage tourism in Malaysia. Advances in Tourism Studies, 1(2), 65–71. http://dx.doi.org/10.47492/ats.v1i2.18
- Potingan, A. R. S., Cois, C. C., Basilio, R. M., & Napaldet, J. T. (2025). Assessment of conservation benefits of ecotourism in secondary forest ecosystems using PD-ZTCM-WTP in Mt Yangbew, Benguet, Philippines. TAIWANIA, 70(1). https://doi.org/10.6165/tai.2025.70.156
- Andrei, N., Scarlat, C., & Ioanid, A. (2024). Transforming e-commerce logistics: Sustainable practices through autonomous maritime and last-mile transportation solutions. Logistics, 8(3), 71. https://doi.org/10.3390/logistics8030071
- Azzaz, A. M. S., & Elshaer, I. A. (2024). Heritage tourism resilience and sustainable performance post COVID-19: Evidence from hotels sector. Heritage, 7(3), 1162–1173. https://doi.org/10.3390/heritage7030055
- Dewayani, E. K. U., Nahar, F. H., & Nugroho, T. (2023). Unveiling the social media revolution in tourism: Unraveling Instagram's profound influence on travelers. Advances in Tourism Studies, 1(2), 16–22. http://dx.doi.org/10.47492/ats.v1i2.15
- Du, W., Feng, Z., & Zhao, Y. (2025). The impact of lifting COVID-19 restrictions on influenza transmission across countries. Advances in Continuous and Discrete Models, 2025(1). https://doi.org/10.1186/s13662-025-03872-5
- Engelberg, D. (2024). The value of scenario discovery in land-use modeling: An automated vehicle test case. Journal of Transport and Land Use, 17(1), 321–349. https://doi.org/10.5198/jtlu.2024.2401
- Gkavra, R., Susilo, Y. O., & Klementschitz, R. (2024). Determinants of usage and satisfaction with demand responsive transport systems in rural areas. Transportation Research Record: Journal of the Transportation Research Board, 2678(6), 667–680. https://doi.org/10.1177/03611981231198834
- Hsieh, F.-S. (2025). Emerging research issues and directions on MaaS, sustainability and shared mobility in smart cities with multi-modal transport systems. Applied Sciences, 15(10), 5709. https://doi.org/10.3390/app15105709
- Jafari, A. S., Mozaffari Nejad, A. S., Faraji, H., Abdel-Moneim, A. S., Asgari, S., Karami, H., Kamali, A., Kheirkhah Vakilabad, A. A., Habibi, A., & Faramarzpour, M. (2025). Diagnostic challenges in fungal coinfections associated with global COVID-19. Scientifica, 2025(1). https://doi.org/10.1155/sci5/6840605
- Monaco, S. (2021). Tourism, safety and COVID-19: Security, digitization and tourist behaviour (1st ed.). Routledge. https://doi.org/10.4324/9781003195177
- Qamilla, Z., Mahsyar, L., & Supriadi, E. (2023). Kere Alang promotion strategy for Poto Village in supporting tourism development in Sumbawa Regency. Advances in Tourism Studies, 1(1), 22–28. https://doi.org/10.47492/ats.v1i1.4
- Tantawi, E. B., Suteja, I. W., Hulfa, I., Putra, I. N. T. D., & Martayadi, U. (2023). Empowerment of Songket woven craftsmen: Qualitative study of creative economy in Sukarara Village, Indonesia. Advances in Tourism Studies, 1(1), 29–36. http://dx.doi.org/10.47492/ats.v1i1.9
- Xiong, X., Sun, D., Wong, I. A., & Lian, Q. L. (2025). Do tourists prefer dialectal service? The role of processing fluency, distinctiveness, and cultural learning cues. Journal of Travel Research. https://doi.org/10.1177/00472875251332953